Advances in hybrid finite element – boundary integral – multilevel fast multipole – uniform geometrical theory of diffraction method
نویسندگان
چکیده
منابع مشابه
Hybrid Finite Element Boundary Integral Method
MKT0000528 › With recent improvements in the efficiency of integral equation solutions it is now possible to combine the integral equation procedure with the finite element method (FEM) in a hybrid Finite Element Boundary Integral approach (FEBI) [1]. In electromagnetics the FEM is a general purpose technique that solves for volumetric electric fields and can be used to accurately characterize ...
متن کاملFast Multipole Boundary Element Method in 2D Elastodynamics
This paper is concerned with the fast multipole boundary element method (FMBEM) in two dimensional frequency domain elastodynamics. The fast multipole method (FMM) is derived by the Galerkin vector in the elastodynamic field. The elastodynamic field is expressed as the sum of the longitudinal and transverse wave fields, and the Galerkin vector FMM is simply derived from the scalar wave FMM. Mul...
متن کاملThe fast multipole method for the symmetric boundary integral formulation
A symmetric Galerkin boundary-element method is used for the solution of boundary-value problems with mixed boundary conditions of Dirichlet and Neumann type. As a model problem we consider the Laplace equation. When an iterative scheme is employed for solving the resulting linear system, the discrete boundary integral operators are realized by the fast multipole method. While the single-layer ...
متن کاملFast multipole acceleration of the MEG/EEG boundary element method.
The accurate solution of the forward electrostatic problem is an essential first step before solving the inverse problem of magneto- and electroencephalography (MEG/EEG). The symmetric Galerkin boundary element method is accurate but cannot be used for very large problems because of its computational complexity and memory requirements. We describe a fast multipole-based acceleration for the sym...
متن کاملFast Multipole Boundary Element Method of Potential Problems
In order to overcome the difficulties of low computational efficiency and high memory requirement in the conventional boundary element method for solving large-scale potential problems, a fast multipole boundary element method for the problems of Laplace equation is presented. through the multipole expansion and local expansion for the basic solution of the kernel function of the Laplace equati...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Advances in Radio Science
سال: 2007
ISSN: 1684-9973
DOI: 10.5194/ars-5-101-2007